
CS250B: Modern Computer Systems
Performance Profiling with PerfTools

Sang-Woo Jun

How To Evaluate Our Approaches?

❑ Say, we made a performance engineering change in our program
o …And performance decreased by 10%

o Why? Can we know?

❑ Many tools provide profiling capabilities
o gprof, OProfile, Valgrind, VTune, PIN, …

❑ We will talk about perf, part of perf tools
o Native support in the Linux kernel

o Straightforward PMC (Performance Monitoring Counter) support

Aside:
Performance Monitoring Counters (PMC)

❑ Problem: How can we measure architectural events?
o L1 cache miss rates, branch mis-predicts, total cycle count, instruction count, …

o No way for software to know

o Events happen too often for software to be counting them

❑ Solution: PMCs (Sometimes called Hardware Performance Counters)
o Dozens of special registers that can each be programmed to count an event

o Privileged registers, only accessible by kernel

o Supported PMCs differ across models and designs

❑ Usage
o Program PMC, read PMC, run piece of code, read PMC, compare read values

Linux Perf

❑ Performance analysis tool in Linux
o Natively supported by kernel

o Supports profiling a VERY wide range of events: PMC to kernel events

o Note: needs sudo to do most things

❑ Many operation modes: top, stat, record, report, …
o Supported events found in “sudo perf list”

…

Linux Perf: Stat

❑ Default command prints some useful information
o “sudo perf stat ls”

❑ More events can be traced using -e
o sudo perf stat -e task-clock,page-faults,cycles,instructions,branches,branch-

misses,LLC-loads,LLC-load-misses ls

Linux Perf: Record, Report

❑ Log events with “record”, interactively analyze it with “report”
o sudo perf record -e cycles,instructions,L1-dcache-loads,L1-dcache-load-misses […]

o Creates “perf.data”

❑ “sudo perf report” reads “perf.data”

This is where
most cycles are spent!

This is where
most L1 cache misses are!

CS 250B: Modern Computer Systems

Modern Processors – Handling Branches

Sang-Woo Jun

What Do Conditionals Compile To?

❑ Conditionals (sometimes) compile to branch instructions in assembly
o Compiler optimizations may replace

branch instructions with something else

o But not always

❑ Branch instructions take cycles(s)
o At least one cycle, perhaps more

o Obvious!

gcc, x86-64,
no optimizations

Generated using GCC explorer: https://gcc.godbolt.org/

https://gcc.godbolt.org/

Remember:
Pipelined Processors and Hazards

❑ Modern, pipelined processors handle multiple instructions at once
o Ideally, N-stage pipeline processes N instructions at a given cycle

o But, sometimes future instructions depend on results of earlier ones (“Hazard”)

o Many types of hazards were introduced in undergrad architecture class

❑ Today, we look at the impact of handling “Control hazards”

time

Fetch WritebackDecode Execute Memory

Fetch WritebackDecode Execute Memory

Fetch WritebackDecode Execute Memory

instr. 1

instr. 2

instr. 3

Handling Control Hazards

❑ Branch determines flow of control
o Fetching next instruction depends on branch outcome

o Pipeline can’t always fetch correct instruction
• e.g., Still working on decode stage of branch

Fetch WritebackDecode Execute Memory

PC

i1: beq s0, zero, elsewhere

i2: addi s1, s0, 1

Cycle 1

Cycle 2

Which one should I load?

i3: addi s1, s0, 2

elsewhere:

?

Stalling until we know the correct answer results in multi-cycle overhead

Control Hazard (Partial) Solution:
Branch Prediction

❑ Processor will try to predict whether branch is taken or not
o If prediction is correct, great!

• Single cycle overhead

o If not, we do not apply the effects of mis-predicted instructions
• Effectively same performance penalty as stalling in this case

• Can be many cycles of overhead depending on pipeline depth

Simple Branch Predictor Example

Fetch WritebackDecode Execute Memory

addi

addi addi

addi addibeq

addi addibeqsw t3

addi addibeqsw t3ret

Pipeline bubbles

addibeqsw t2

Mispredict detected!

Fetch correct branch

No state update before Execute stage can detect misprediction
(Fetch and Decode stages don’t write to register)

Some Classes Of Branch Predictors

❑ Static branch prediction
o Based on typical branch behavior

o Example: loop and if-statement branches
• Predict backward branches taken

• Predict forward branches not taken

❑ Dynamic branch prediction
o Hardware measures actual branch behavior

• e.g., record recent history (1-bit “taken” or “not taken”) of each branch
in a fixed size “branch history table”

o Assume future behavior will continue the trend
• When wrong, stall while re-fetching, and update history

Many many different methods, Lots of research, some even using neural networks!

Branch prediction and performance

❑ Effectiveness of branch predictors is crucial for performance
o Spoilers: On SPEC benchmarks, modern predictors routinely have 98+% accuracy

o Of course, less-optimized code may have much worse behavior

❑ Branch-heavy software performance depends on good match between
software pattern and branch prediction
o Some high-performance software optimized for branch predictors in target

hardware

o Or, avoid branches altogether! (Branchless code)

Recap: Loop unrolling
A Compiler Solution To Branch Hazards

for (i = 0 to 15) foo(); for (i = 0 to 3) {
 foo();
 foo();
 foo();
 foo();
}

Potentially 16 branch mispredicts
Even without mispredicts,
branch instruction consume 16 cycles

Potentially 4 branch mis-predicts
Without mis-predicts,
branch instruction consume 4 cycles

Loop unrolling

We can do this manually, or tell the compiler to do its best
- GCC flags -funroll-loops, -funroll-all-loops
- How much to unroll depends on heuristics within compiler

Code Example: Counting Numbers

❑ How fast is the following code?
o a and b are initialized to rand()%256

o cnt is 100,000,000

o Compiled with GCC –O3

❑ This code takes 0.44s on my desktop (i5 @ 3 GHz)
o Each loop takes 13.2 cycles (3 GHz * 0.44 / 100,000,000)

o Can we do better? My x86 is 4-way superscalar!

Optimization Attempt #1: Loop Unrolling

❑ There are three potential branch instruction locations
o “i < cnt”, “a[i] < 128”, and b[i] < 128”

❑ Is the bottleneck the “for” loop?
o Let’s try giving -funroll-all-loops

❑ Performance increased from 0.44s to ~0.43s.
o Better, but not by much

Identifying The Bottleneck

❑ We predict the “if” statements are the bottlenecks
o Each of the two branch instructions has a 50% chance of being taken

o Branch prediction very inefficient!

❑ Performance improves when comparison becomes skewed
o 0.44s when comparing against 128 (50%)

o 0.27s when comparing against 64 (25%), 0.17s with 32

Optimization Attempt #2: Branchless Code

❑ Let’s try getting rid of the “if” statement. How?

❑ Some knowledge of architectural treatment of numbers is required
o x86 represents negative numbers via two’s complement

o “1” == 0x1, “-1” == 0xffffffff

o “1>>31” == 0x0, “-1>>31” == 0xffffffff

❑ “(v-128)>>31”
o if v >= 128: 0x0

o v < 128: 0xffffffff
So many more instructions! Will this be faster?

Comparing Performance Numbers

Name Elapsed
(s)

Vanilla 0.44 s

Branchless 0.06 s

Vanilla on sorted data 0.05 s

Branchless on sorted data 0.06 s

~2 cycles per loop! 8 Operations with 4 way superscalar…

Branch predictor is almost always correct

Vanilla: Total misses: 57 M out of 3,623 M

Branchless: Total misses: 7 M out of 3,514 M

Interestingly, loop with only one comparator is automatically optimized by compiler

Shows same performance as the branchless one

Over 7x performance!

Aside: Spectre (Simplified)

❑ Branch prediction is supposed to be transparent

❑ But not all aspects of it are!

int array[256];

char forbidden = (*forbidden_ptr);

if (a != a) {

 int ignore = array[forbidden] ;

}

for (int i = 0; i < 256; i++) is_in_cache(array[i]);

Never executes, so never caught by sandbox (e.g., JVM, javascript)

But mispredicted branch still affects cache!

Attacker can time the cache to discover contents

Slightly Deeper into Speculative Execution

❑ Branch prediction is one example of Speculative Execution

❑ Modern processors speculatively execute many things!
o e.g., Does this Virtual Memory page belong to the Kernel?

o Assume we have access to everything, and roll back state if turns out to be false

o Always waiting for checks is too much overhead!

Aside: Meltdown (Simplified)

❑ Caches are supposed to be transparent

❑ But not all aspects of it are!

int array[256];

char forbidden = (*forbidden_ptr);

int ignore = array[forbidden] ;

for (int i = 0; i < 256; i++) is_in_cache(array[i]);

Assuming (*forbidden_ptr) returns zeros in the correct operation, instead of protection fault

Always being safe is too much overhead. How do we fix this?

Questions?

CS 250B: Modern Computer Systems

Modern Processors – SIMD Extensions

Sang-Woo Jun

Modern Processor Topics

❑ Transparent Performance Improvements
o Pipelining, Caches

o Superscalar, Out-of-Order, Branch Prediction, Speculation, …

o Covered in CS250A and others

❑ Explicit Performance Improvements
o SIMD extensions, AES extensions, …

o …

❑ Non-Performance Topics
o Virtualization extensions, secure enclaves, transactional memory, …

Flynn Taxonomy (1966) Recap

Data Stream

Single Multi

Instruction
Stream

Single SISD
(Single-Core Processors)

SIMD
(GPUs, Intel SSE/AVX extensions, …)

Multi MISD
(Systolic Arrays, …)

MIMD
(VLIW, Parallel Computers)

Flynn Taxonomy Recap

Single-Instruction
Single-Data
(Single-Core Processors)

Multi-Instruction
Single-Data
(Systolic Arrays,…)

Single-Instruction
Multi-Data
(GPUs, SIMD Extensions)

Multi-Instruction
Multi-Data
(Parallel Computers)

Intel SIMD Extensions

❑ New instructions, new registers

❑ Introduced in phases/groups of functionality
o SSE – SSE4 (1999 –2006)

• 128 bit width operations

o AVX, FMA, AVX2, AVX-512 (2008 – 2015)
• 256 – 512 bit width operations

❑ F16C, and more to come?

Ice Lake Annotated Die (2019)

Die photo from Intel, annotation by Wikichip

Sandy Bridge Microarchitecture (2011)

e.g., “Port 5 pressure” when code uses too much shuffle operations

Skylake-X Microarchitecture (2019)

Anandtech

Apple M1 Microarchitecture (2020)

Anandtech

ZMM0
YMM0

Intel SIMD Registers (AVX-512)

XMM0

ZMM1
YMM1

XMM1

ZMM31
YMM31

XMM31

…

❑ XMM0 – XMM15
o 128-bit registers

o SSE

❑ YMM0 – YMM15
o 256-bit registers

o AVX, AVX2

❑ ZMM0 – ZMM31
o 512-bit registers

o AVX-512

SSE/AVX Data Types

YMM0

float float float float

double double

int32 int32 int32 int32

float float float float

double double

int32 int32 int32 int32

16 16

8 8

16 16

8 8 8 8 8 8

16 16

8 8

16 16

8 8 8 8 8 8

16 16

8 8

16 16

8 8 8 8 8 8

16 16

8 8

16 16

8 8 8 8 8 8 Operation on
32 8-bit values
in one instruction!

255 0

Complexity of AVX-512

From @InstLatx64

Aside: Do I Have SIMD Capabilities?

❑ less /proc/cpuinfo

Processor Microarchitectural Effects on
Power Efficiency

❑ The majority of power consumption of a CPU is not from the ALU
o Cache management, data movement, decoding, and other infrastructure

o Adding a few more ALUs should not impact power consumption

❑ Indeed, 4X performance via AVX does not add 4X power consumption
o From i7 4770K measurements with matrix multiplication:

o Idle: 40 W

o Under load : 117 W

o Under AVX load : 128 W

Compiler Automatic Vectorization

❑ In gcc, flags “-O3 -mavx -mavx2” attempts automatic vectorization

❑ Works pretty well for simple loops

❑ But not for anything complex
o E.g., naïve bubblesort code not parallelized at all

Generated using GCC explorer: https://gcc.godbolt.org/

https://gcc.godbolt.org/

Intel SIMD Intrinsics

❑ Use C functions instead of inline assembly to call AVX instructions

❑ Compiler manages registers, etc

❑ Intel Intrinsics Guide
o https://software.intel.com/sites/landingpage/IntrinsicsGuide

o One of my most-visited pages…

e.g.,
__m256 a, b, c;
__m256 d = _mm256_fmadd_ps(a, b, c); // d[i] = a[i]*b[i]+c[i] for i = 0 …7

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Data Types in AVX/AVX2

Type Description

__m128 128-bit vector containing 4 floats

__m128d 128-bit vector containing 2 doubles

__m128i 128-bit vector containing integers

__m256 256-bit vector containing 8 floats

__m256d 256-bit vector containing 4 doubles​

__m256i 256-bit vector containing integers

1~16 signed/unsigned integers

1~32 signed/unsigned integers

__m512 variants also for AVX-512

Intrinsic Naming Convention

❑ _mm<width>_[function]_[type]
o E.g., _mm256_fmadd_ps :

 perform fmadd (fused multiply-add) on
 256 bits of
 packed single-precision floating point values (8 of them)

Width Prefix

128 _mm_

256 _mm256_

512 _mm512_

Type Postfix

Single precision _ps

Double precision _pd

Packed signed integer _epiNNN (e.g., epi256)

Packed unsigned integer _epuNNN (e.g., epu256)

Scalar integer _siNNN (e.g., si256)Not all permutations exist! Check guide

Load/Store/Initialization Operations

❑ Initialization
o _mm256_setzero_ps/pd/epi32/…

o _mm256_set_...

o …

❑ Load/Store : Variants for addresses aligned/unaligned by 256-bit
o _mm256_load_... _mm256_loadu_...

o _mm256_store_... _mm256_storeu_...

❑ And many more! (Masked read/write, strided reads, etc…)

e.g.,
__mm256d t = _mm256_load_pd(double const * mem); // loads 4 double values from mem to t
__mm256i v = _mm256_set_epi32(h,g,f,e,d,c,b,a); // loads 8 integer values to v

Vertical Vector Instructions

❑ Add/Subtract/Multiply
o _mm256_add/sub/mul/div_ps/pd/epi

• Mul only supported for epi32/epu32/ps/pd

• Div only supported for ps/pd

• Consult the guide!

❑ Max/Min/GreaterThan/Equals

❑ Sqrt, Reciprocal, Shift, etc…

❑ FMA (Fused Multiply-Add)
o (a*b)+c, -(a*b)-c, -(a*b)+c, and other permutations!

o Consult the guide!

❑ …

a

b

c

d

× × × ×

+ + + +

=

__m256 a, b, c;
__m256 d = _mm256_fmadd_pd(a, b, c);

= ==

Integer Multiplication Caveat

❑ Integer multiplication of two N bit values require 2N bits

❑ E.g., __mm256_mul_epi32 and __mm256_mul_epu32
o Only use the lower 4 32 bit values

o Result has 4 64 bit values

❑ E.g., __mm256_mullo_epi32 and __mm256_mullo_epu32
o Uses all 8 32 bit values

o Result has 8 truncated 32 bit values

❑ And more options!
o Consult the guide…

Horizontal Vector Instructions

❑ Horizontal add/subtraction
o Adds adjacent pairs of values

o E.g., __m256d _mm256_hadd_pd (__m256d a, __m256d b)

a b

c

+
+ +

+

Shuffling/Permutation

❑ Within 128-bit lanes
o _mm256_shuffle_ps/pd/… (a,b, imm8)

o _mm256_permute_ps/pd

o _mm256_permutevar_ps/…

❑ Across 128-bit lanes
o _mm256_permute2x128/4x64 : Uses 8 bit control

o _mm256_permutevar8x32/… : Uses 256 bit control

❑ Not all type permutations exist for each type, but variables can be cast
back and forth between types

Matt Scarpino, “Crunching Numbers with AVX and AVX2,” 2016

Blend

❑ Merges two vectors using a control
o _mm256_blend_... : Uses 8 bit control

• e.g., _mm256_blend_epi32

o _mm256_blendv_... : Uses 256 bit control
• e.g., _mm256_blendv_epi8

a b

c

? ? ? ?

Alignr

❑ Right-shifts concatenated value of two registers, by byte
o Often used to implement circular shift by using two same register inputs

o _mm256_alignr_epi8 (a, b, count)

a b

c

Example of 64-bit values being shifted by 8

Helper Instructions

❑ Cast
o __mm256i <-> __mm256, etc…

o Syntactic sugar -- does not spend cycles

❑ Convert
o 4 floats <-> 4 doubles, etc…

❑ Movemask
o __mm256 mask to -> int imm8

❑ And many more…

Our Current State Of Matrix Multiply:
Blocked Multiplication

❑ Performance is best when working set fits into cache
o But as shown, even 2048 x 2048 doesn’t fit in cache

o -> 2048 * 2048 * 2048 elements read from memory for matrix B

❑ Solution: Divide and conquer! – Blocked matrix multiply
o For block size 32 × 32 -> 2048 * 2048 * (2048/32) reads

×

A1 B1

B2

=
B3

C1A2 A3

C1 sub-matrix = A1×B1 + A2×B2 + A3×B3 …

Blocked Matrix Multiply Evaluations
Benchmark Elapsed (s) Normalized

Performance

Naïve 63.19 1

Transposed 10.39 6.08

Blocked (32) 7.35 8.60

AVX Transposed 2.20 28.72

Blocked (32) AVX 1.50 42.13

4 Thread Blocked (32) AVX 1.09 57.97

Bottlenecked by computation

Bottlenecked by memory

Bottlenecked by processor

❑ AVX Transposed reading from DRAM at 14.55 GB/s
o 20483 * 4 (Bytes) / 2.20 (s) = 14.55 GB/s

o 1x DDR4 2400 MHz on machine -> 18.75 GB/s peak

o Pretty close! Considering DRAM also used for other things (OS, etc)

❑ Multithreaded getting 32 GB/s effective bandwidth
o Cache effects with small chunks

Bottlenecked by memory (Not scaling!)

Blocked Matrix Multiply Evaluations
Benchmark Elapsed (s) Normalized

Performance

Naïve 63.19 1

Transposed 10.39 6.08

Blocked (32) 7.35 8.60

AVX Transposed 2.20 28.72

Blocked (32) AVX 1.50 42.13

4 Thread Blocked (32) AVX 1.09 57.97

Cache-Oblivious AVX 0.45 140.42

4 Thread Cache-Oblivious AVX 0.28 225.68

❑ Using FMA SIMD, Cache-Oblivious AVX gets 19 GFLOPS
o Theoretical peak is 3 GHz x 8 way SIMD == 24 GFLOPS… Close!

140x performance increase compared to the baseline!

Case Study: Sorting

❑ Important, fundamental application!

❑ Can be parallelized via divide-and-conquer

❑ How can SIMD help?

Reminder: Sorting Network

❑ Network structure for sorting fixed number of values

❑ Type of a “comparator network”
o comparators perform compare-and-swap

❑ Easily pipelined and parallelized

Example 4-element sorting network
5 comparators, 3 cycle pipelined

Reminder: Sorting Network

❑ Simple to generate correct sorting networks, but optimal structures are
not well-known

Source: Wikipedia (Sorting Network) Some known optimal sorting networks

SIMD And Sorting Networks

❑ Typically, we are sorting more than one set of tuples
o If we have multiple tasks, we can have task-level parallelism – Optimized networks!

o Sort multiple tuples at the same time

❑ We first need to transpose the 8 8-element variables
o Each variable has a value for each sorting network instance

o Non-SIMD works, or a string of unpackhi/unpacklo/blend

…

Instruction 1, 2 (min, max)

Instruction 3, 4 (min, max)

SIMD And Sorting Networks

❑ Some SIMD instructions have high throughput, but high latency
o Data dependency between two consecutive max instructions can take 8 cycles on

Skylake

o If each parallel stage has less than 4 operations, pipeline may stall
• Solution: Interleave two sets of parallel 8-tuple sorting

o In reality, min/max means even for 4-tuples, pipeline is still filled

Source: Instrinsics guide

The Two Register Merge

❑ Sort units of two pre-sorted registers, K elements
o minv = A, maxv = B

o // Repeat K times
• minv = min(minv,maxv)

• maxv = max(minv,maxv)

• // circular shift one value down

• minv = alignr(minv, minv, sizeof(int))

Inoue et.al., “SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures,” VLDB 2015

SIMD And Merge Sort

❑ Hierarchically merged sorted
subsections

❑ Using the SIMD merger for sorting
o vector_merge is the two-register sorter

from before

Inoue et.al., “SIMD- and Cache-Friendly Algorithm for Sorting an
Array of Structures,” VLDB 2015

Topic Under Active Research!

❑ Papers being written about…
o Architecture-optimized matrix transposition

o Register-level sorting algorithm

o Merge-sort

o … and more!

❑ Good find can accelerate your application kernel Nx

Questions?

	Slide 1: CS250B: Modern Computer Systems Performance Profiling with PerfTools
	Slide 2: How To Evaluate Our Approaches?
	Slide 3: Aside: Performance Monitoring Counters (PMC)
	Slide 4: Linux Perf
	Slide 5: Linux Perf: Stat
	Slide 6: Linux Perf: Record, Report
	Slide 7: CS 250B: Modern Computer Systems Modern Processors – Handling Branches
	Slide 8: What Do Conditionals Compile To?
	Slide 9: Remember: Pipelined Processors and Hazards
	Slide 10: Handling Control Hazards
	Slide 11: Control Hazard (Partial) Solution: Branch Prediction
	Slide 12: Simple Branch Predictor Example
	Slide 13: Some Classes Of Branch Predictors
	Slide 14: Branch prediction and performance
	Slide 15: Recap: Loop unrolling A Compiler Solution To Branch Hazards
	Slide 16: Code Example: Counting Numbers
	Slide 17: Optimization Attempt #1: Loop Unrolling
	Slide 18: Identifying The Bottleneck
	Slide 19: Optimization Attempt #2: Branchless Code
	Slide 20: Comparing Performance Numbers
	Slide 21: Aside: Spectre (Simplified)
	Slide 22: Slightly Deeper into Speculative Execution
	Slide 23: Aside: Meltdown (Simplified)
	Slide 24: Questions?
	Slide 25: CS 250B: Modern Computer Systems Modern Processors – SIMD Extensions
	Slide 26: Modern Processor Topics
	Slide 27: Flynn Taxonomy (1966) Recap
	Slide 28: Flynn Taxonomy Recap
	Slide 29: Intel SIMD Extensions
	Slide 30: Ice Lake Annotated Die (2019)
	Slide 31: Sandy Bridge Microarchitecture (2011)
	Slide 32: Skylake-X Microarchitecture (2019)
	Slide 33: Apple M1 Microarchitecture (2020)
	Slide 34: Intel SIMD Registers (AVX-512)
	Slide 35: SSE/AVX Data Types
	Slide 36: Complexity of AVX-512
	Slide 38: Aside: Do I Have SIMD Capabilities?
	Slide 39: Processor Microarchitectural Effects on Power Efficiency
	Slide 40: Compiler Automatic Vectorization
	Slide 41: Intel SIMD Intrinsics
	Slide 42: Data Types in AVX/AVX2
	Slide 43: Intrinsic Naming Convention
	Slide 44: Load/Store/Initialization Operations
	Slide 45: Vertical Vector Instructions
	Slide 46: Integer Multiplication Caveat
	Slide 47: Horizontal Vector Instructions
	Slide 48: Shuffling/Permutation
	Slide 49: Blend
	Slide 50: Alignr
	Slide 51: Helper Instructions
	Slide 52: Our Current State Of Matrix Multiply: Blocked Multiplication
	Slide 53: Blocked Matrix Multiply Evaluations
	Slide 54: Blocked Matrix Multiply Evaluations
	Slide 55: Case Study: Sorting
	Slide 56: Reminder: Sorting Network
	Slide 57: Reminder: Sorting Network
	Slide 58: SIMD And Sorting Networks
	Slide 59: SIMD And Sorting Networks
	Slide 60: The Two Register Merge
	Slide 61: SIMD And Merge Sort
	Slide 62: Topic Under Active Research!
	Slide 63: Questions?

