CS250B: Modern Computer Systems
Performance Profiling with PerfTools

(1
>

Sang-Woo Jun

How To Evaluate Our Approaches?

J Say, we made a performance engineering change in our program
o ..And performance decreased by 10%
o Why? Can we know?

(d Many tools provide profiling capabilities
o gprof, OProfile, Valgrind, VTune, PIN, ...
J We will talk about perf, part of perf tools

o Native support in the Linux kernel
o Straightforward PMC (Performance Monitoring Counter) support

Aside:
Performance Monitoring Counters (PMC)

J Problem: How can we measure architectural events?

o L1 cache miss rates, branch mis-predicts, total cycle count, instruction count, ...

o No way for software to know
o Events happen too often for software to be counting them

J Solution: PMCs (Sometimes called Hardware Performance Counters)
o Dozens of special registers that can each be programmed to count an event
o Privileged registers, only accessible by kernel
o Supported PMCs differ across models and designs

J Usage

o Program PMC, read PMC, run piece of code, read PMC, compare read values

Linux Pertf

J Performance analysis tool in Linux

o Natively supported by kernel
o Supports profiling a VERY wide range of events: PMC to kernel events
o Note: needs sudo to do most things

J Many operation modes: top, stat, record, report, ...
o Supported events found in “sudo perf list”

List of pre-defined events (to be used i1n -e):

Software event]
Software event]

page-faults OR faults

Hardware event e P e

branch-instructions OR branches
branch-misses Hardware event

[| %
[|
bus-cycles [Hardware event] Ll-dcache-load-misses [Hardware cache event]
cache-misses [Hardware event] L1-dcache-loads [Hardware cache event]
cache-references [Hardware event] Ll-dcache-stores [Hardware cache event]
cpu-cycles OR cycles [Hardware event] Ll-1cache-load-misses [Hardware cache event]
instructions [Hardware event] LLC-load-misses [Hardware cache event]
ref-cycles [Hardware event] LLC-loads Hardware cache event

Linux Perf: Stat

J Default command prints some useful information

“sudo perf stat Is”

J/More events can be traced using -e

o sudo perf stat -e task-clock,page-faults,cycles,instructions,branches,branch-
misses,LLC-loads,LLC-load-misses Is

Performance counter stats for 'ls':

B.652008 task-clock (msec)
B context-switches
] cpu-migrations

104 page-faults
2,797,861 cycles
2,245,082 instructlons
444,895 branches
16,749 branch-misses

He e e etk e Ak

0.0003810402 seconds time elapsed

0.681485
102
2,921,152
2,217,325
439,589
16,608
kT
3,269

CPUs utilized
o

M/sec

GHz

insn per cycle
M/fsec

of all branches

Performance counter stats for 'ls':

task-clock (msec])
page-faults
cycles
instructions
branches
branch-misses
LLC-1loads
LLC-load-misses

0.000872088 seconds time elapsed

H Ak e e o A A

CPUs utilized

0 M/sec
1.286 GHz

insn per cycle

G M/fsec

% of all branches

6 M/sec

3% of all LL-cache hits

Linux Perf: Record, Report

J Log events with “record”, interactively analyze it with “report”

o sudo perf record -e cycles,instructions,L1-dcache-loads,L1-dcache-load-misses [...]
o Creates “perf.data”

J “sudo perf report” reads “perf.data”

: 8 of event 'cycles', Event count (approx.): 2476964 . .
Command Shared Object Symbol PR— This is where
taxl [kernel. Lq11~_ 5 [k] memcpy erms
perf 1 . kallsyms [k] perf_event_addr_filters_exec most CYCIGS are Spent!
0.00% perf < |.kallsyms] [k] native write msr
0.00% tail [k] native write_msr

} 1nstructions
} L1-dcache-loads
Ll-dcache-load-misses

: 7 of event 'Ll—dcache—lnad—miSEEE'. Event count (approx.): 36818 ..
Command Shared Objec This is where

_ «— - !
perf_iterate ctx most L1 cache misses are!

perf_event_addr_filters_exec
; native_write_msr
[kernel. La11~um~] native write_msr

CS 250B: Modern Computer Systems

Modern Processors — Handling Branches

(1
>

Sang-Woo Jun

What Do Conditionals Compile To?

(d Conditionals (sometimes) compile to branch instructions in assembly

o Compiler optimizations may replace bar(int):
branch instructions with something else push rbp
o But not always mov rbp, rsp
_ _ mov DWORD PTR [rbp-4], edi
J Branch instructions take cycles(s) i DWORD PTR [rbp-4], ©

o At least one cycle, perhaps more jne LL2

o Obvious! mov eax, 1
jmp .L3
int bar(int v) {
if (v == @) return 1; mov eax, ©
else return 06; .L3:
: gcc, x86-64, POP GEE

. ret
no optimizations

Generated using GCC explorer: https://gcc.godbolt.org/

https://gcc.godbolt.org/

Remember:
Pipelined Processors and Hazards

J Modern, pipelined processors handle multiple instructions at once

o ldeally, N-stage pipeline processes N instructions at a given cycle
o But, sometimes future instructions depend on results of earlier ones (“Hazard”)
o Many types of hazards were introduced in undergrad architecture class

J Today, we look at the impact of handling “Control hazards”

time

instr. 1 Fetch Decode Execute Memory | Writeback

instr. 2 Fetch Decode Execute Memory | Writeback

instr. 3 Fetch Decode Execute Memory | Writeback

Handling Control Hazards

i1: beq sO, zero, elsewhere
i2: addi s1, sO, 1
elsewhere:

i3: addi s1, s0O, 2

1 Branch determines flow of control
o Fetching next instruction depends on branch outcome

o Pipeline can’t always fetch correct instruction
* e.g., Still working on decode stage of branch

PC [«

Fetch » Decode » Execute » Memory —>| Writeback
Cycle 1
Cycle 2 ?

~

Which one should | load? Stalling until we know the correct answer results in multi-cycle overhead

Control Hazard (Partial) Solution:
Branch Prediction

J Processor will try to predict whether branch is taken or not
o If prediction is correct, great!
* Single cycle overhead

o If not, we do not apply the effects of mis-predicted instructions
» Effectively same performance penalty as stalling in this case
e Can be many cycles of overhead depending on pipeline depth

Simple Branch Predictor Example

addi t1, zero, 3
addil t2, zero, 3

beq t1, t2, skip

sw t3, 0(toe)
ret

skip:
sw t2, 0(ta)
ret

Fetch » Decode » Execute » Memory —>| Writeback
addi

addi addi Mispredict detected!

beq addi addi

sw t3 beq addi addi

ret sw t3 beq addi addi

sw t2 () () beq addi

\

Fetch correct branch

Pipeline bubbles

No state update before Execute stage can detect misprediction
(Fetch and Decode stages don’t write to register)

Some Classes Of Branch Predictors

1 Static branch prediction
o Based on typical branch behavior

o Example: loop and if-statement branches
* Predict backward branches taken
* Predict forward branches not taken

(J Dynamic branch prediction

o Hardware measures actual branch behavior

* e.g., record recent history (1-bit “taken” or “not taken”) of each branch
in a fixed size “branch history table”

o Assume future behavior will continue the trend
* When wrong, stall while re-fetching, and update history

Many many different methods, Lots of research, some even using neural networks!

Branch prediction and performance

d Effectiveness of branch predictors is crucial for performance
o Spoilers: On SPEC benchmarks, modern predictors routinely have 98+% accuracy
o Of course, less-optimized code may have much worse behavior

J Branch-heavy software performance depends on good match between
software pattern and branch prediction

o Some high-performance software optimized for branch predictors in target
hardware

o Or, avoid branches altogether! (Branchless code)

Recap: Loop unrolling
A Compiler Solution To Branch Hazards

for (i=0to 15) foo(); for(i=0to3){
Loop unrolling foo();
j‘> foo();
| foo();
foo();
}
Potentially 16 branch mispredicts Potentially 4 branch mis-predicts
Even without mispredicts, Without mis-predicts,
branch instruction consume 16 cycles branch instruction consume 4 cycles

We can do this manually, or tell the compiler to do its best
- GCC flags -funroll-loops, -funroll-all-loops
- How much to unroll depends on heuristics within compiler

Code Example: Counting Numbers

J How fast is the following code?
o aand b are initialized to rand()%256
o c¢ntis 100,000,000
o Compiled with GCC-03

for (

}

J This code takes 0.44s on my desktop (i5 @ 3 GHz)
o Each loop takes 13.2 cycles (3 GHz * 0.44 / 100,000,000)
o Can we do better? My x86 is 4-way superscalar!

= 0; 1 < cnt; i++) {

i
if (a[i] < 128 && b[i] < 128) lcnt++;

Optimization Attempt #1: Loop Unrolling

J There are three potential branch instruction locations
o “i<cnt”, “ali] <128” and b[i] < 128"

1 Is the bottleneck the “for” loop?
o Let’s try giving -funroll-all-loops

for (= 0; 1 < cnt; i++) {

i
if (a[i] < 128 && b[i] < 128) lcnt++;

}

J Performance increased from 0.44s to ~0.43s.
o Better, but not by much

ldentifying The Bottleneck

J We predict the “if” statements are the bottlenecks

o Each of the two branch instructions has a 50% chance of being taken
o Branch prediction very inefficient!

9; 1 < cnt; i++) {

i] < 128 & b[i] < 128) lcnt++;

d Performance improves when comparison becomes skewed
o 0.44s when comparing against 128 (50%)
o 0.27s when comparing against 64 (25%), 0.17s with 32

Optimization Attempt #2: Branchless Code

d Let’s try getting rid of the “if” statement. How?

d Some knowledge of architectural treatment of numbers is required
o x86 represents negative numbers via two’s complement
o “1” ==0x1, “-1” == Oxffffffff
o “1>>31” == 0x0, “-1>>31" == Oxffffffff

d “(v-128)>>31"

o if v>=128:0x0

o V< 128: Oxffffffff

So many more instructions! Will this be faster?

for (

}

9; 1 < cnt; i++) {

lent + E (((a[i] - 128)>>31)&1) * (((b[i] - 128)>>31)&1));

Comparing Performance Numbers

Vanilla: Total misses: 57 M out of 3,623 M

Overhead Command Shared Object S
.out a.out [

.out libc-2.27.s0 [

[

[

[

ymbol

] main

] __random

] _ _random r

Elapsed

.out libc-2.27.s0

. .out [kernel.kallsyms] k] _ pagevec 1lru_add fn
Vanilla 0.44s .out [kernel.kallsyms] k] get page from freelist
Branchless 0.06s ~2 cycles per loop! 8 Operations with 4 way superscalar...
. |
Branchless: Total misses: 7 M out of 3,514 M Over 7x performance!
Shared Object Symbol
. libc-2.27.so0 [.] _ _random
_ _ . libc-2.27.s0 .] __random_r
Branch predictor is almost always correct : [kernel.kallsyms] get_page from_freelist

[kernel.kallsyms] __pagevec_lru_add fn
[kernel.kallsyms] __handle_mm_fault
a.out .] main

libc-2.27.s0 .] rand

Interestingly, loop with only one comparator is automatically optimized by compiler

for (1 =0; i < cnt; i++) {
if (a[i] < 128) lcnt ++;

Shows same performance as the branchless one

Aside: Spectre (Simplified) Qﬁa’

J Branch prediction is supposed to be transparent SPECTRE
J But not all aspects of it are!

int array[256];
char forbidden = (*forbidden_ptr);
If (d != d) { Never executes, so never caught by sandbox (e.g., JVM, javascript)

int ign0re = array[forbidden] » But mispredicted branch still affects cache!

}

for (inti=0; i< 256; i++)is_in_cache(array[i]);

Attacker can time the cache to discover contents

Slightly Deeper into Speculative Execution

(1 Branch prediction is one example of Speculative Execution

(J Modern processors speculatively execute many things!
o e.g., Does this Virtual Memory page belong to the Kernel?
o Assume we have access to everything, and roll back state if turns out to be false

o Always waiting for checks is too much overhead!

Aside: Meltdown (Simplified)

(1 Caches are supposed to be transparent
J But not all aspects of it are!

int array[256];

char forbidden = (*forbidden_ptr);

int ignore = array[forbidden] ;

for (inti=0;i<256;i++)is_in_cache(arrayli]);

Assuming (*forbidden_ptr) returns zeros in the correct operation, instead of protection fault

Always being safe is too much overhead. How do we fix this?

Questions?

CS 250B: Modern Computer Systems

Modern Processors — SIMD Extensions

(1
>

Sang-Woo Jun

Modern Processor Topics

J Transparent Performance Improvements
o Pipelining, Caches
o Superscalar, Out-of-Order, Branch Prediction, Speculation, ...
o Covered in CS250A and others

d Explicit Performance Improvements

o SIMD extensions, AES extensions, ...
O ..

Flynn Taxonomy (1966) Recap

Data Stream

Single Multi
Instruction Single SISD SIMD
Stream (Single-Core Processors) (GPUs, Intel SSE/AVX extensions, ...)
Multi MISD MIMD
(Systolic Arrays, ...) (VLIW, Parallel Computers)

Flynn Taxonomy Recap

Data

Instructions

A4

.| Processing

A

Data

Unit

Instructions

A 4 h 4

Processing Processing
> —

Unit Unit

Single-Instruction
Single-Data
(Single-Core Processors)

Multi-Instruction
Single-Data
(Systolic Arrays,...)

Data

Instructions

Processing

Y

N

Unit

.| Processing

3

Unit

v

.| Processing

3

Data

Unit

Instructions

y

n

L 4

Processing
Unit

A4

N

Processing ”
Unit

N

v

Processing |

Unit

Single-Instruction
Multi-Data
(GPUs, SIMD Extensions)

Multi-Instruction
Multi-Data
(Parallel Computers)

Intel SIMD Extensions

(J New instructions, new registers

1 Introduced in phases/groups of functionality

o SSE — SSE4 (1999 —2006)
e 128 bit width operations

o AVX, FMA, AVX2, AVX-512 (2008 — 2015)
e 256 —512 bit width operations

J F16C, and more to come?

Ice Lake Annotated Die (2019)

LPDDR4x

Die photo from Intel, annotation by Wikichip

Sandy Bridge Microarchitecture (2011)

Instruction Fetch & Decode Allocate/Rename/Retire

Scheduler (Port names as used by IACA)

| M ALU ﬂ] Load Load

VIMUL VI ADD IMP Store Address | Store Address || STD

SSE MUL SSE ADD AVX/FP Shuf |
DIV* AVX FP ADD Avx;;v Bool

AVX FP MUL Imm Blend Imfn Blend

11 .

Memory Control

/

e.g., “Port 5 pressure” when code uses too much shuffle operations

Skylake-X Microarchitecture (2019)

Anandtech

32K . BPU | AVX-512 Port Fusion
Instruction Cache - -
uncore I | Dedicated AVX-512 unit |
Legacy Decode Decoded MSROM
Pipeline ICache
) ; !
RN Micro-Op Queue e
¥
1M L2 Allocate/Rename/Retire/Move Elimination/Zero Idiom I
*
Cache
Scheduler I
L N
32K Data Port 2 Port 6 Port O Port1 Port5
Cache LD/STA — | INTEGER ALU INTEGER ALU INTEGER ALU INTEGER ALL
INTEGER DIVIDE INTEGER MUL FAST LEA
SHIFT BRANCH 2 SLOW LEA VEC SHUFFLE
Port 3 BRANCH 1 FAST LEA
VEC FMA
/ VEC MUL VEC MUL VEC MuL
VEC ADD VEC ADD VECADD
Port 4 VEC ALY VEC ALU VECALU
sTD = VEC SHIFTER VEC SHIFTER
INTEGER repretent GPR scalsr instructiond,
VEC represent floating point snd nteger wector instructions.
P‘D[‘t ? SLOW LEA represent & bea with 2 registers and displacermnent, all other lea versions considensd
o a5 FAST LEA
5TA BRANCHY is primary branch snd more capable than BRANCH2

Apple M1 Microarchitecture (2020)

H Ffzﬂl;fnd ﬁh@[@ﬂ@ AL
(Here be dragons) Firestorm

>=192KB L1l

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

INT Rename FP Rename
PRF ~35477 Entries PRF ~3B47?7 Entries

ALUT Y ALUC R ALU

~154e LDQ | ~106e STQ

FP/SIMD + fDIV

256pg 3072pg
L1-DTLE L2-TLE

FAVINANDIECH 128KB L1D

Anandtech

Intel SIMD Registers (AVX-512)

XMMO
YMMO
ZMMO
XMM1
YMM1
/MM1
[
[
[
XMM31
YMM31

/MM31

d XMMO - XMM15

o 128-bit registers
o SSE

d YMMO - YMM15

o 256-bit registers
o AVX, AVX2

J ZMMO - ZMM31
o 512-bit registers
o AVX-512

SSE/AVX Data Types

255 0
YMMO
float float float float float float float float
double double double double
int32 int32 int32 int32 int32 int32 int32 int32
16 | 16 |16 | 16 |16 | 16 |16 | 16 |16 | 16 | 16 | 16 | 16 | 16 | 16 | 16
8|8/8(8|8|8(8|8(8(8/8(8|8|8(8(8|8|8|8(8|8|8(8|8|8(8|8|8(8|8(8|8

Operation on
32 8-bit values
in one instruction!

Complexity of AVX-512

From @InstLatx64

The 12 levels of AVX512 in Intel processors

CannonLake

AVX512VBMI
AVX512IFMA

2017-06-01
according to Intel SDE 8.40
> Knights Mill
SkyLake Xeon Knights
Core-X Landing
/
'X\V/gﬁgg | AVXS512F AVX512ER
AVX512VL I' AVX512CD AVX512PF
\

AvX512_4FMAPS
AVX512_4VNNIW
AVX512VPOPCNTDQ

Aside: Do | Have SIMD Capabillities?

 less /proc/cpuinfo

Zs : tpu vme de pse tsc msr pae moe oxB apic sep mbrr pge mca cmoy
|+|u b dits acei mmx fxsrisze sse? == bt tm rbc svscal | rx pdeelebh rdtsce

ﬁ _t=c art archopertmon pebs bts rep_sgood nopl _turuhthruw|+u¢ t:EIJlﬂljirHrme

r sc_lnown_T req_pn rulmu|1d1 dtesBd monitor ds_cpl wmx est tm? sssed sdbel fma lox]
“t;r rjum poid|ssed 1 szed 2 «Zapic movbe popcnt tsco 4 1||nw timer aes xsave|avx |

1Bc rdrand laht_Im abm : dnnHrrH+c+uh cpuid_fault eph invecid single pti sshd ibrs The
b stibpe tpr_shadow wrmi flexpriority ept wpid fsezshase tsc_adjust bmil lave?| smep llrnl_
erms irvecid mox rdseed adx smap clf lushopt intel_pt xsaveopt xsavec xgethwl xsaves

dtherm ida arat pln pts hwe bwe_not ity bwe_act_window bwe_epe flushe [1d

Processor Microarchitectural Effects on
Power Efficiency

J The majority of power consumption of a CPU is not from the ALU
o Cache management, data movement, decoding, and other infrastructure
o Adding a few more ALUs should not impact power consumption

J Indeed, 4X performance via AVX does not add 4X power consumption
o From i7 4770K measurements with matrix multiplication:
o ldle:40W
o Underload:117 W
o Under AVXload:128 W

Compliler Automatic Vectorization

d In gcc, flags “-O3 -mavx -mavx2” attempts automatic vectorization
J Works pretty well for simple loops

.L2:
. vmovdga xmml, XMMWORD PTR b[rax
int a[256], b[256], c[256]; G ’ L=
. add rax, 16
void foo () { 11d o 1, XMMWORD PTR c 16]
vpmu Xmme, xmm MM c[rax-
for (int i=0; i<256; i++) a[i] = b[i] * c[i]; P e > AT
} vmovaps XMMWORD PTR a[rax-16], xmm@
cmp rax, 1024
jne L2

Generated using GCC explorer: https://gcc.godbolt.org/

d But not for anything complex
o E.g., naive bubblesort code not parallelized at all

https://gcc.godbolt.org/

Intel SIMD Intrinsics

d Use C functions instead of inline assembly to call AVX instructions
J Compiler manages registers, etc

1 Intel Intrinsics Guide
o https://software.intel.com/sites/landingpage/IntrinsicsGuide
o One of my most-visited pages...

e.g.,
~_m2564, b, c;
__m256d=_mm256 fmadd _ps(a, b, c); // d[i] = a[i]*b[i]+c[i] fori=0...7

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Data Types iIn AVX/AVX?2

Type Description
__m128 128-bit vector containing 4 floats
__m128d 128-bit vector containing 2 doubles
__m128i 128-bit vector containing integers
__m256 256-bit vector containing 8 floats
__m256d 256-bit vector containing 4 doubles
__m256i 256-bit vector containing integers

~_m512 variants also for AVX-512

1~16 signed/unsigned integers

1~32 signed/unsigned integers

Intrinsic Naming Convention

d _mm<width>_[function] [type]

o E.g., mm256 fmadd ps:

perform fmadd (fused multiply-add) on
256 bits of

packed single-precision floating point values (8 of them)

128 _mm_ Single precision _ps
256 _mm256_ Double precision _pd
512 ~mmb512 Packed signed integer _epiNNN (e.g., epi256)

Packed unsigned integer _epuNNN (e.g., epu256)

Not all permutations exist! Check guide Scalar integer _siNNN (e.g., si256)

Load/Store/Initialization Operations

d Initialization
o _mm256_setzero ps/pd/epi32/...
O _mm256_set ...

O ..

J Load/Store : Variants for addresses aligned/unaligned by 256-bit
o _mm256 load ... mm256 loadu ...
O _mm256_ store ... mm256_storeu ...

J And many more! (Masked read/write, strided reads, etc...)

e.g.,
~_mm256dt=_mm256 load pd(double const * mem); // loads 4 double values from mem to t

_ _mm256iv=_mm256_set _epi32(h,g,fe,d,c,b,a);// loads 8 integer values to v

Vertical Vector Instructions

J Add/Subtract/Multiply a
o _mm256_add/sub/mul/div_ps/pd/epi x |x X |x
* Mul only supported for epi32/epu32/ps/pd b
* Div only supported for ps/pd
* Consult the guide! + + |+ +
d Max/Min/GreaterThan/Equals C
1 Sqgrt, Reciprocal, Shift, etc... R N D
J FMA (Fused Multiply-Add) d

o (a*b)+c, -(a*b)-c, -(a*b)+c, and other permutations!
o Consult the guide!

0 ~_m2564,b,c;
~_m256d=_mm256 fmadd pd(a, b, c);

Integer Multiplication Caveat

J Integer multiplication of two N bit values require 2N bits
J E.g., mm256 _mul epi32 and _ _mm256_mul_epu32

o Only use the lower 4 32 bit values
o Result has 4 64 bit values

d E.g., mm256 mullo_epi32 and __ mm256_mullo_epu32

o Uses all 8 32 bit values
o Result has 8 truncated 32 bit values

J And more options!
o Consult the guide...

Horizontal Vector Instructions

(] Horizontal add/subtraction
o Adds adjacent pairs of values
o E.g.,, _m256d mm256 hadd pd(m256da, m256db)

——

O
oy
oN

Shuffling/Permutation

d Within 128-bit lanes
o _mm256_shuffle ps/pd/... (a,b, imm8)
o _mm256 permute_ ps/pd
o _mm256_ permutevar_ps/...

d Across 128-bit lanes

res = mm256 permute ps(vec, 0b01110100)

e e
ctrl 100 01 11 01100 01 11 01

_— | 1.0 | 20 | 3.0 | 40 | 50 | 6.0 | 7.0 | 8.0 |

ll\%l

- | 1.0 | 20 | 40 | 2.0 | 50| 6.0 | 8.0 | 6.0

Matt Scarpino, “Crunching Numbers with AVX and AVX2," 2016

o _mm256 permute2x128/4x64 : Uses 8 bit control
o _mm256_permutevar8x32/... : Uses 256 bit control

J Not all type permutations exist for each type, but variables can be cast

back and forth between types

Blend

J Merges two vectors using a control

o _mm256 blend ...: Uses 8 bit control
* e.g.,,_mm256 blend epi32

o _mm256 blendv _...: Uses 256 bit control
* e.g.,_mm256 blendv_epi8

a b

~

ORONORO

Alignr

J Right-shifts concatenated value of two registers, by byte
o Often used to implement circular shift by using two same register inputs
o _mm256 alignr_epi8 (a, b, count)

Example of 64-bit values being shifted by 8

a b

SN

C

Helper Instructions

J Cast
o __mm256i<->_ mm256, etc...
o Syntactic sugar -- does not spend cycles

J Convert
o 4 floats <-> 4 doubles, etc...

J Movemask
o __mm256 mask to ->intimm8

J And many more...

Our Current State Of Matrix Multiply:
Blocked Multiplication

d Performance is best when working set fits into cache
o But as shown, even 2048 x 2048 doesn’t fit in cache
o ->2048 * 2048 * 2048 elements read from memory for matrix B

J Solution: Divide and conquer! — Blocked matrix multiply
o For block size 32 x 32 -> 2048 * 2048 * (2048/32) reads

Al | A2 | A3 Bl C1

B2

B3

C1 sub-matrix = A1xB1 + A2xB2 + A3xB3 ...

Blocked Matrix Multiply Evaluations

Benchmark Elapsed (s) Normalized
Performance

Naive 63.19 1
Transposed 10.39 6.08
Blocked (32) 7.35 8.60

Bottlenecked by computation
Bottlenecked by memory
Bottlenecked by processor

Bottlenecked by memory (Not scaling!)

J AVX Transposed reading from DRAM at 14.55 GB/s

o 20483 * 4 (Bytes) / 2.20 (s) = 14.55 GB/s

o 1x DDR4 2400 MHz on machine -> 18.75 GB/s peak
o Pretty close! Considering DRAM also used for other things (OS, etc)

J Multithreaded getting 32 GB/s effective bandwidth

o Cache effects with small chunks

Blocked Matrix Multiply Evaluations

Benchmark Elapsed (s) Normalized
Performance

Naive 63.19 1
Transposed 10.39 6.08
Blocked (32) 7.35 8.60
AVX Transposed 2.20 28.72
Blocked (32) AVX 1.50 42.13
4 Thread Blocked (32) AVX 1.09 57.97

J Using FMA SIMD, Cache-Oblivious AVX gets 19 GFLOPS
o Theoretical peakis 3 GHz x 8 way SIMD == 24 GFLOPS... Close!

140x performance increase compared to the baseline!

Case Study: Sorting

J Important, fundamental application!
J Can be parallelized via divide-and-conquer
J How can SIMD help?

Reminder: Sorting Network

J Network structure for sorting fixed number of values

d Type of a “comparator network”
o comparators perform compare-and-swap

J Easily pipelined and parallelized

IS

Example 4-element sorting network
5 comparators, 3 cycle pipelined

Reminder: Sorting Network

J Simple to generate correct sorting networks, but optimal structures are
not well-known

1

“

E2002 Ron Zeno

Bubble sorting network = Insertion sorting network == When allowing for parallel =
comparators, bubble sort and

Source: Wikipedia (Sorting Network) LR Some known optimal sorting networks

SIMD And Sorting Networks

d Typically, we are sorting more than one set of tuples
o If we have multiple tasks, we can have task-level parallelism — Optimized networks!
o Sort multiple tuples at the same time

d We first need to transpose the 8 8-element variables
o Each variable has a value for each sorting network instance
o Non-SIMD works, or a string of unpackhi/unpacklo/blend

/_\/ Instruction 1, 2 (min, max) \y-\ o
P L\ N\
() ())
A ! ! !
\ /, —
! : —
Instruction 3, 4 (min, max)

SIMD And Sorting Networks

(d Some SIMD instructions have high throughput, but high latency

o Data dependency between two consecutive max instructions can take 8 cycles on
Skylake

o If each parallel stage has less than 4 operations, pipeline may stall
e Solution: Interleave two sets of parallel 8-tuple sorting

o In reality, min/max means even for 4-tuples, pipeline is still filled

__m256d _mm256_max_pd (__m256d a, __m256d b)

> Performance Source: Instrinsics guide

Architecture Latency Throughput (CPI)
Skylake 4 0.5

Broadwell 3 1
‘ Haswell 3 1
— lvy Bridge 3 1

The Two Register Merge

d Sort units of two pre-sorted registers, K elements
o minv=A, maxv=8

o // Repeat K times

* minv = min(minv,maxv) sorted sorted
! vectorregister A vectorregister B
* maxv = max(minv,maxv) input ? [A2] A3] [B2] BB l Companson
o // circular shift one value down
* minv = alignr(minv, minv, sizeof(int)) J/ L) VoL b
\l/ \l/ \l/ d/ % no operation
output | BO | B1 | B2 | B3 |
vectorregister A sorted vectorregisterB

r

Inoue et.al., “SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures,” VLDB 2015

SIMD And Merge Sort

3 Hierarchically merged sorted e o e
: vMax = vb[bPos++];
SUbSECtIOﬂS while (aPc[)s < aEr]ld && bPos < bEnd) {
) . /* merge vMin and vMax */
 Using the SIMD merger for sorting vector_merge(vMin, vMax);

o vector_merge is the two-register sorter /* store the smaller vector as output*/
— vMergedArray[outPos++] = vMin;
from before

/* load next vector and advance pointer %/
/* al[aPos*4] is first element of va[aPos] */
/* and b[bPos*4] is that of vb[bPos])
if (a[aPos*4] < b[bPos*4])

vMin = va[aPos++];
else

vMin = vb[bPos++];

}

Inoue et.al., “SIMD- and Cache-Friendly Algorithm for Sorting an
Array of Structures,” VLDB 2015

Topic Under Active Research!

J Papers being written about...
o Architecture-optimized matrix transposition
o Register-level sorting algorithm
o Merge-sort
O ...and more!

(J Good find can accelerate your application kernel Nx

Questions?

	Slide 1: CS250B: Modern Computer Systems Performance Profiling with PerfTools
	Slide 2: How To Evaluate Our Approaches?
	Slide 3: Aside: Performance Monitoring Counters (PMC)
	Slide 4: Linux Perf
	Slide 5: Linux Perf: Stat
	Slide 6: Linux Perf: Record, Report
	Slide 7: CS 250B: Modern Computer Systems Modern Processors – Handling Branches
	Slide 8: What Do Conditionals Compile To?
	Slide 9: Remember: Pipelined Processors and Hazards
	Slide 10: Handling Control Hazards
	Slide 11: Control Hazard (Partial) Solution: Branch Prediction
	Slide 12: Simple Branch Predictor Example
	Slide 13: Some Classes Of Branch Predictors
	Slide 14: Branch prediction and performance
	Slide 15: Recap: Loop unrolling A Compiler Solution To Branch Hazards
	Slide 16: Code Example: Counting Numbers
	Slide 17: Optimization Attempt #1: Loop Unrolling
	Slide 18: Identifying The Bottleneck
	Slide 19: Optimization Attempt #2: Branchless Code
	Slide 20: Comparing Performance Numbers
	Slide 21: Aside: Spectre (Simplified)
	Slide 22: Slightly Deeper into Speculative Execution
	Slide 23: Aside: Meltdown (Simplified)
	Slide 24: Questions?
	Slide 25: CS 250B: Modern Computer Systems Modern Processors – SIMD Extensions
	Slide 26: Modern Processor Topics
	Slide 27: Flynn Taxonomy (1966) Recap
	Slide 28: Flynn Taxonomy Recap
	Slide 29: Intel SIMD Extensions
	Slide 30: Ice Lake Annotated Die (2019)
	Slide 31: Sandy Bridge Microarchitecture (2011)
	Slide 32: Skylake-X Microarchitecture (2019)
	Slide 33: Apple M1 Microarchitecture (2020)
	Slide 34: Intel SIMD Registers (AVX-512)
	Slide 35: SSE/AVX Data Types
	Slide 36: Complexity of AVX-512
	Slide 38: Aside: Do I Have SIMD Capabilities?
	Slide 39: Processor Microarchitectural Effects on Power Efficiency
	Slide 40: Compiler Automatic Vectorization
	Slide 41: Intel SIMD Intrinsics
	Slide 42: Data Types in AVX/AVX2
	Slide 43: Intrinsic Naming Convention
	Slide 44: Load/Store/Initialization Operations
	Slide 45: Vertical Vector Instructions
	Slide 46: Integer Multiplication Caveat
	Slide 47: Horizontal Vector Instructions
	Slide 48: Shuffling/Permutation
	Slide 49: Blend
	Slide 50: Alignr
	Slide 51: Helper Instructions
	Slide 52: Our Current State Of Matrix Multiply: Blocked Multiplication
	Slide 53: Blocked Matrix Multiply Evaluations
	Slide 54: Blocked Matrix Multiply Evaluations
	Slide 55: Case Study: Sorting
	Slide 56: Reminder: Sorting Network
	Slide 57: Reminder: Sorting Network
	Slide 58: SIMD And Sorting Networks
	Slide 59: SIMD And Sorting Networks
	Slide 60: The Two Register Merge
	Slide 61: SIMD And Merge Sort
	Slide 62: Topic Under Active Research!
	Slide 63: Questions?

